

INTRODUCTION

XPEL® RX silver ion protection film is a product from US which was a provider of protective films for the automotive industry since 1997. It was claimed to be specially formulated containing silver ions and treated with anti-microbial and fungistatic agents which inhibits the growth of microbes on the film's surface.¹

Silver ions (Ag⁺) are widely used as an antibacterial agent for many types of medical devices. The clinical importance of silver has been recognized for over 2000 years and it is normally used in the form of nitrate to achieve required antimicrobial action. Nanoparticles of silver have been shown to have better dispersion stability, uniform distribution and increase the surface area accessible for the microbial exposure.² Thus, it had an excellent antibacterial and bactericidal properties.³ Silver nanoparticles has also been studied on potential use in development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies and performance-enhanced therapeutic alternatives.⁴ Experimental studies showed that the antipathogenic activity of silver nanoparticles is better than that exhibited by silver ions.⁴

Figure 1. XPEL RX protection film use for imaging devices¹

Hence, this rapid review is conducted to provide scientific evidence on the use of XPEL® RX silver ion protection film for COVID-19 based on a request from the Medical Care Quality Section (MOH) following a proposal from a company to introduce the technology.

EVIDENCE ON EFFECTIVENESS AND SAFETY

There was no retrievable evidence from scientific databases such as Medline, EBM Reviews, EMBASE via OVID, PubMed and from the general search engines (Google Scholar) related to XPEL® RX silver ion protection film for COVID-19.

However, there were 11 retrievable studies related to the use of silver ions as an antibacterial agent used in coating or film for medical devices. Based on the report, the results are summarised in table below:

Study	Year	Types of Silver ions	Types of	Deculto
Study		used medical device		Results
Samberg	2013	Silver ions	Electrically-	Antibacterial efficacy against
et al. ⁵			activated silver-	E. coli and S. aureus strains
			based medical	
			device	
Taheri et	2014	Silver nanoparticles	Medical devices	Antibacterial efficacy against
al. ⁶			such as	three pathogenic bacteria i.e.
			implants and	Staphylococcus epidermidis,
			wound	Staphylococcus aureus and
			dressings	Pseudomonas aeruginosa.
Li et al. ³	2015	Modified	blood-contacting	Antibacterial activities
		polypropylene	medical devices	(bacteria adhesion,
		surface loaded with	such as heart	bactericidal activity, biofilm
		the Ag NPs capped	valves,	formation) against Gram-
		with d-α-tocopheryl	catheters,	negative Escherichia coli and
		polyethylene glycol	pacemaker	Gram-positive
		1000 succinate	leads,	Staphylococcus aureus
		(TPGS)	hemodialysis	
			membranes and	

			blood storage	
			devices	
Gilabert-	2016	Silver	Medical device	Antibacterial properties
Pores et		micro/nanoparticles	for implantation	combined with an antifouling
al. ⁷				behavior causing a reduction
				of Gram-positive and Gram-
				negative bacteria viability (P.
				aeruginosa, S. aureus)
Goncalves	2017	Reused silver loaded	Any medical	Antibacterial activity against
et al. ⁸		substrate:	device-related	Staphylococcus aureus and
		Phosphotungstate	infection	Pseudomonas aeruginosa
		Ormosil doped with		
		core-shell		
		(SiO2@TiO2) and Ag		
		nanoparticle		
		photoassisted		
		synthesis (POrs-CS-		
		Ag)		
Jyoti et	2017	Phytosynthesized	AgNPs coating	Bactericidal activity against
al. ⁹		silver nanoparticles	on glass	Staphylococcus epidermidis
		(AgNPs) coating	surfaces such	and Staphylococcus aureus
			as artificial	
			prosthetics and	
			catheters	
				
Kim et	2017	Silver nanoparticles	Silicon-based	-Effective antibacterial activity
al.'		(silver nitrate,	implanting	ot the nanocomposites
		AgNO3, 99%) on a	device (AgNP-	against both <i>E. coli</i> and S.
		polydimethylsiloxane	coated) such as	aureus was achieved
		(PDMS) film	catheters,	
			prosthetics,	-INO SIGNIFICANT AGNP-
			bone adhesives,	mediated cytotoxicity driven
			contact lenses	by AGNP on PDMS film was

				and	ureteral	observed.
				stents		
Barkat	et	2018	Silver nanoparticles	Any	medical	Antimicrobial activity
al. ²			(AgNPs)	device		according to the diameter of
						AgNPs against Escherichia
						coli, Pseudomonas
						aeruginosa, Salmonella typii,
						Klebsiella pneumonia, Vibrio
						cholera, Bacillus subtilis,
						Listeria monocytogenes,
						Staphylococcus aureus,
						Clostridium diphtheria
Burduse	el	2018	Silver nanoparticles	Any	medical	Anti-inflammatory, anti-
et al.4			(AgNPs)	device		angiogenesis, antiplatelet,
						antiviral, antifungal, and
						antibacterial activities against
						methicillin-resistant
						Staphylococcus aureus
Liao	et	2019	Silver nanoparticles	Aliphatic	;	Effective to kill multi-drug
al. ¹¹			(AgNPs)	polyester	r	resistant bacteria that cause
				nanocom	nposites	medical device-related
				with	silver	infections (Enterococcus
				nanopart	ticles	faecalis, S. aureus, S.
						epidermidis, E. coli, Klebsiella
						pneumoniae, Proteus
						mirabilis, and P. aeruginosa)
Puca	et	2019	Microcrystalline	Medical	device	Effective towards
al. ¹²			titanium dioxide	containin	ng TIAB	Staphylococcus spp.,
			(TiO2) nanoparticles			Enterococcus spp. and
			covalently linked with			Escherichia coli and also
			monovalent silver			inhibiting biofilm formation.
			ions (Ag+)			

SAFETY

There was no retrievable evidence on safety related to the use of XPEL® RX silver ion protection film. However, the toxicity studies performed in a rat ear model proved that the silver nanoparticles exposure resulted in significant mitochondrial dysfunction and subsequent temporary or permanent hearing loss, depending on the inoculation dose. Low concentrations of silver nanoparticles also were absorbed by retinal cells and resulted in important structural disruption, due to the increased number of cells that underwent oxidative stress.⁴

There was no retrievable evidence on the safety. However, the use of infrared thermography is considered safe as it is non-invasive, contactless and non-radiant.⁹

Cost

The cost of the device ranges between USD499.00 to USD3000.00.¹⁰⁻¹²

CONCLUSION

There was no evidence retrieved from the scientific databases on the effectiveness and safety of XPEL® RX Silver Ion Protection film for COVID-19.

REFERENCE

- 1. RX Protection film. Available at: <u>https://www.xpel.com/rx</u>. Accessed on 5th April 2020.
- 2. Barkat MA, Beg S, Naim M et al. Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent patents on anti-infective drug discovery. 2018;13(1):53-69.
- 3. Li C, Cai B, Jin J et al. Hemocompatible, antioxidative and antibacterial polypropylene prepared by attaching silver nanoparticles capped with TPGS. Journal of Materials Chemistry B. 2015;3(42):8410-8420.
- 4. Burduşel AC, Gherasim O, Grumezescu AM et al. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 2018 Sep;8(9):681.
- Samberg ME, Tan Z, Monteiro-Riviere NA et al. Biocompatibility analysis of an electricallyactivated silver-based antibacterial surface system for medical device applications. Journal of Materials Science: Materials in Medicine. 2013;24(3):755-760.
- 6. Taheri S, Cavallaro A, Christo SN et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014;35(16):4601-4609.

- 7. Gilabert-Porres J, Martí S, Calatayud L et al. Design of a nanostructured active surface against Gram-positive and Gram-negative bacteria through plasma activation and in situ silver reduction. ACS applied materials and interfaces. 2016;8(1):64-73.
- 8. Gonçalves LP, Miñán A, Benítez G et al. Self-sterilizing ormosils surfaces based on photosynzthesized silver nanoparticles. Colloids and Surfaces B: Biointerfaces. 2018;164:144-154.
- 9. Jyoti K and Singh A. Evaluation of antibacterial activity from phytosynthesized silver nanoparticles against medical devices infected with Staphylococcus spp. Journal of Taibah University Medical Sciences. 2017;12(1):47-54.
- 10. Kim JH, Park H and Seo SW. In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Convergence. 2017;4(1):33.
- 11. Liao C, Li Y, Tjong SC. Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. Nanomaterials. 2019 Aug;9(8):1102.
- 12. Puca V, Traini T, Guarnieri S et al. The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection. Molecules. 2019;24(12):2280.

Based on available evidence up to 12 May 2020.

Disclosure: The authors of this report has no competing interest in this subject and the preparation of this report is totally funded by the Ministry of Health, Malaysia.

Disclaimer: This rapid assessment was prepared to provide urgent evidence-based input during COVID-19 pandemic. The report is prepared based on information available at the time of research and a limited literature. It is not a definitive statement on the safety, effectiveness or cost effectiveness of the health technology covered. Additionally, other relevant scientific findings may have been reported since completion of this report.

Malaysian Health Technology Assessment Section (MaHTAS), Medical Development Division, Ministry of Health, Malaysia.

U

mymahtas

